Testing covariates in high-dimensional regression
نویسندگان
چکیده
Abstract In a high-dimensional linear regressionmodel, we propose a new procedure for testing statistical significance of a subset of regression coefficients. Specifically, we employ the partial covariances between the response variable and the tested covariates to obtain a test statistic. The resulting test is applicable even if the predictor dimension is much larger than the sample size. Under the null hypothesis, together with boundedness and moment conditions on the predictors, we show that the proposed test statistic is asymptotically standard normal, which is further supported by Monte Carlo experiments. A similar test can be extended to generalized linear models. The practical usefulness of the test is illustrated via an empirical example on paid search advertising.
منابع مشابه
Joint Testing and False Discovery Rate Control in High-Dimensional Multivariate Regression
Multivariate regression with high-dimensional covariates has many applications in genomic 15 and genetic research, in which some covariates are expected to be associated with multiple responses. This paper considers joint testing for regression coefficients over multiple responses and develops simultaneous testing methods with false discovery rate control. The test statistic is based on inverse...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملOn Sliced Inverse Regression With High-Dimensional Covariates
Sliced inverse regression is a promising method for the estimation of the central dimension-reduction subspace (CDR space) in semiparametric regression models. It is particularly useful in tackling cases with high-dimensional covariates. In this article we study the asymptotic behavior of the estimate of the CDR space with high-dimensional covariates, that is, when the dimension of the covariat...
متن کاملTesting Endogeneity with Possibly Invalid Instruments and High Dimensional Covariates
The Durbin-Wu-Hausman (DWH) test is a commonly used test for endogeneity in instrumental variables (IV) regression. Unfortunately, the DWH test depends, among other things, on assuming all the instruments are valid, a rarity in practice. In this paper, we show that the DWH test often has distorted size even if one IV is invalid. Also, the DWH test may have low power when many, possibly high dim...
متن کاملTesting a single regression coefficient in high dimensional linear models.
In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predict...
متن کامل